Integrators

Hamiltonian dynamic

LangevinIntegrators.VelocityVerletType
VelocityVerlet(force, M, Δt)

Set up the velocity Verlet integrator.

Fields

  • force - In place gradient of the potential
  • M - Mass (either scalar or vector)
  • Δt - Time step
source
LangevinIntegrators.PositionVerletType
PositionVerlet(force, M, Δt)

Set up the position Verlet integrator.

Fields

  • force - In place gradient of the potential
  • M - Mass (either scalar or vector)
  • Δt - Time step
source

Overdamped dynamics

LangevinIntegrators.EMType
EM(force, β, Δt)

Set up the EM integrator for overdamped Langevin.

Fields

  • force - In place gradient of the potential
  • β - Inverse temperature
  • Δt - Time step
source

Langevin dynamics

LangevinIntegrators.BBKType
BBK(force, β, γ, M, Δt)

Set up the BBK integrator for inertial Langevin.

Fields

  • force - In place gradient of the potential
  • β - Inverse temperature
  • γ - Damping Coefficient
  • M - Mass (either scalar or vector)
  • Δt - Time step
source
LangevinIntegrators.VECType
VEC(force, β, γ, M, Δt)

Set up the Vanden-Eijnden Ciccotti integrator for inertial Langevin. Taken from "Second-order integrators for Langevin equations with holonomic constraints" doi: 10.1016/j.cplett.2006.07.086

Fields

  • force - In place gradient of the potential
  • β - Inverse temperature
  • γ - Damping Coefficient
  • M - Mass (either scalar or vector)
  • Δt - Time step
source
LangevinIntegrators.GJType
GJ(force, β, γ, M, Δt, type)

Set up the various GJ integrator for inertial Langevin. Use type to select the approriate integrator

Fields

  • force - In place gradient of the potential
  • β - Inverse temperature
  • γ - Damping Coefficient
  • M - Mass (either scalar or vector)
  • Δt - Time step
  • type - Choice of the integrator should be one of "I","II","III","IV","V","VI"
source
LangevinIntegrators.GJFFunction
GJF(force, β, γ, M, Δt)

Set up the G-JF integrator for inertial Langevin.

Fields

  • force - In place gradient of the potential
  • β - Inverse temperature
  • γ - Damping Coefficient
  • M - Mass (either scalar or vector)
  • Δt - Time step
source
LangevinIntegrators.BAOABType
BAOAB(force, β, γ, M, Δt)

Set up the BAOAB integrator for inertial Langevin.

Fields

  • force - In place gradient of the potential
  • β - Inverse temperature
  • γ - Damping Coefficient
  • M - Mass (either scalar or vector)
  • Δt - Time step
source
LangevinIntegrators.OBABOType
OBABO(force, β, γ, M, Δt)

Set up the OBABO integrator for inertial Langevin.

Fields

  • force - In place gradient of the potential
  • β - Inverse temperature
  • γ - Damping Coefficient
  • M - Mass (either scalar or vector)
  • Δt - Time step
source
LangevinIntegrators.ABOBAType
ABOBA(force, β, γ, M, Δt)

Set up the ABOBA integrator for inertial Langevin.

Fields

  • force - In place gradient of the potential
  • β - Inverse temperature
  • γ - Damping Coefficient
  • M - Mass (either scalar or vector)
  • Δt - Time step
source

Generalized Langevin dynamics

Missing docstring.

Missing docstring for EM_Kernel. Check Documenter's build log for details.

LangevinIntegrators.BBK_KernelType
BBK_Kernel(force, β, γ, M, Δt)

Set up the BBK_Kernel integrator for generalized Langevin.

Adapted from Iterative Reconstruction of Memory Kernels Gerhard Jung,,†,‡ Martin Hanke,,§ and Friederike Schmid*,†

Fields

  • force - In place gradient of the potential
  • β - Inverse temperature
  • γ - Damping Coefficient
  • M - Mass (either scalar or vector)
  • Δt - Time step
source
LangevinIntegrators.GJF_KernelType
GJF_Kernel(force, β, γ, M, Δt)

Set up the G-JF integrator for inertial Langevin.

Adapted from Iterative Reconstruction of Memory Kernels Gerhard Jung,,†,‡ Martin Hanke,,§ and Friederike Schmid*,†

Fields

  • force - In place gradient of the potential
  • β - Inverse temperature
  • γ - Damping Coefficient
  • M - Mass (either scalar or vector)
  • Δt - Time step
source

Generalize Langevin dynamic with hidden variables

LangevinIntegrators.EM_HiddenType
EM_Hidden(force, β, Δt)

Set up the EM_Hidden integrator for underdamped Langevin with hidden variables.

Fields

  • force - In place gradient of the potential
  • A - Friction matrix
  • C - diffusion matrix
  • Δt - Time step
source
LangevinIntegrators.ABOBA_HiddenType
ABOBA_Hidden(force, β, γ, M, Δt)

Set up the ABOBA_Hidden integrator for underdamped Langevin with hidden variables.

Fields

  • force - In place gradient of the potential
  • β - Inverse temperature
  • γ - Damping Coefficient
  • M - Mass (either scalar or vector)
  • Δt - Time step
source